Time series is sequentially revealed, time-stamped and time-critical data. People also call it "streaming data", "event streams" or "sequential data".
Just like "software is eating the world", time series are eating static data sets:
The problem for operational managers is that standard machine learning solutions applied to time series underperform.
***
This page provides short explanations and links to interesting resources about the three main aspects of machine learning for time series: preprocessing, modeling and post-processing.
You don't need perfect data streaming from a brand-new data lake to build valuable machine learning solution for time series. But you do need to handle your data carefully.
The resources below deal with the preprocessing steps required for efficient time series modeling.
Modeling is the core of the data scientist's jobs. The possibilities are endless, and the state of the art fast-moving.
Surprisingly given how pervasive time series are, the specificities of time series modeling are not well known. The resources below cover the main aspects of time series modeling.
Congratulations, your machine learning prototype is completed. Does it mean it is ready for production? Unfortunately not... Pre-processing and modeling are only half of the job. Software packaging (« post-processing ») is the other half - technical, fastidious, but absolutely necessary.
The resources below describe the main post-processing tasks required for machine learning and time series.
Datapred SA
EPFL Innovation Park
Lausanne 1015
Switzerland
contact@datapred.com